Please wait a minute...
自然科学史研究  2019, Vol. 38 Issue (4): 479-495    
论文     
对埃米尔·阿廷《伽罗瓦理论》的历史分析
张勇1, 邓明立2
1.北京大学哲学系,北京 100871;
2.河北师范大学数学与信息科学学院,石家庄 050024
A Historical Analysis of Emil Artin's Galois Theory
ZHANG Yong1, DENG Mingli2
1. Department of Philosophy, Peking University, Beijing 100871, China;
2. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
 全文: PDF(1356 KB)  
摘要: 用抽象代数来处理伽罗瓦理论由阿廷完成,他重视线性代数方法,成功绕过本原元素定理而证明了伽罗瓦理论的基本定理。文章在已有研究的基础上,分析了阿廷成功解读伽罗瓦理论的多种因素及其著作《伽罗瓦理论》的背景、结构及定位。在伽罗瓦理论的抽象化历程中,阿廷受到戴德金、希尔伯特、施泰尼茨等人的影响,这说明代数学在19世纪和20世纪发展环境的变化是阿廷《伽罗瓦理论》成功的前提。最后,文章调查了《伽罗瓦理论》对现代伽罗瓦理论专著及代数学教材的影响。
关键词: 伽罗瓦《伽罗瓦理论》阿廷    
Abstract: Emil Artin(1898—1962) reformulated Galois theory via abstract algebra. He linearized the theory, and succeeded in bypassing the primitive element theorem to prove its fundamental theorem. On the basis of predecessors' research, this paper analyses the various factors that led to Artin's successful reinterpretation of Galois theory, and further elaborates on the background, structure and role of his book Galois Theory. It provides an in-depth understanding about how Artin was influenced by Dedekind, Hilbert and Steinitz on the abstract process of Galois theory. It further reveals that the elevation of the level of abstraction inalgebra between the 19th and 20th centuries was a prerequisite for the success of Artin's Galois Theory. Finally, the author investigates the influence of Galois Theory on modern Galois theory monographs and algebra textbooks. This paper also commemorates the 120th anniversary of the birth of Emil Artin.
Key words: Galois    Galois Theory    Emil Artin
收稿日期: 2018-05-02 出版日期: 2022-06-18
ZTFLH:  N091  
基金资助: 国家自然科学基金资助项目"群论统一数学的历史研究"(项目编号:11671117)、"代数数论及其相关领域的历史研究(项目编号:11871018)
通讯作者: 邓明立,1962年生,河北辛集人,教授,研究方向为代数学及近现代数学史。   
作者简介: 张勇,1990年生,河北邢台人,北京大学数学科学学院与哲学系联合培养博士研究生,研究方向为拓扑学及近现代数学史。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张勇
邓明立

引用本文:

张勇, 邓明立. 对埃米尔·阿廷《伽罗瓦理论》的历史分析[J]. 自然科学史研究, 2019, 38(4): 479-495.

ZHANG Yong, DENG Mingli. A Historical Analysis of Emil Artin's Galois Theory. Studies in the History of Natural Sciences, 2019, 38(4): 479-495.

链接本文:

http://www.shns.ac.cn/CN/        http://www.shns.ac.cn/CN/Y2019/V38/I4/479

1 胡作玄. 阿廷[M]//中国大百科全书总编辑委员会《数学》编辑委员会. 中国大百科全书·数学. 北京: 中国大百科全书出版社, 1988. 5.
2 胡作玄. 近代数学史[M]. 济南: 山东教育出版社, 2006. 403.
3 Van der Waerden B L. Die Galois-Theorie von Heinrich Weber bis Emil Artin[J]. Archive for History of Exact Sciences, 1972, 9(3): 240~248.
4 Kiernan B M. The Development of Galois Theory from Lagrange to Artin[J]. Archive for History of Exact Sciences, 1971, 8(1-2): 40~154.
5 Neumann O. Die Entwicklung der Galois-Theorie zwischen Arithmetik und Topologie(1850 bis 1960)[J]. Archive for History of Exact Sciences, 1997, 50(3-4): 309~310.
6 Kleiner I. A History of Abstract Algebra[M]. Boston·Basel·Berlin: Birkhäuser, 2007. 63~64.
7 Van der Waerden B L. Die Algebra seit Galois[J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1966, 68: 155~165.
8 Bourbaki N. Elements of the History of Mathematics (Translated from the French by John Meldrum)[M]. Berlin: Springer-Verlag, 1994. 66~83.
9 Zassenhaus H. Emil Artin, His Life and His Work[J]. Notre Dame Journal of Formal Logic, 1964, 5(1): 2~3.
10 Dumbaugh D, Schwermer J. Creating a Life: Emil Artin in America[J]. Bulletin of the American Mathematical Society, 2013, 50(2): 322~323.
11 Artin E. Galoissche Theorie[M]. Leipzig: B. G. Teubner Verlagsgesellschaft, 1959. Vorwort.
12 Menger K. Reminiscences of the Vienna Circle and the Mathematical Colloquium[M]. Dordrecht: Springer Science+Business Media, 1994. 225.
13 Van der Waerden B L. On the Sources of My Book Moderne Algebra[J]. Historia Mathematica, 1975, 2(1): 31~40.
14 Van der Waerden B L. Moderne Algebra I [M]. Berlin: Springer-Verlag, 1930. 2~3.
15 Soifer, A. The Scholar and the State: In Search of Van der Waerden[M]. Basel: Birkhäuser, 2015. 39~46.
16 Mac lane S. Van der Waerden's Modern Algebra[J]. Notices of the American Mathematical Society, 1997, 44(3): 322.
17 Van der Waerden B L. Algebra I [M]. Berlin·Heidelberg·New York: Springer-Verlag, 1971.
18 阿廷. 伽罗华理论[M]. 李同孚, 译. 上海: 上海科学技术出版社, 1979.
19 丁石孙, 袁向东, 郭金海. 有话可说——丁石孙访谈录[M]. 长沙: 湖南教育出版社, 2013. 46.
20 Artin E. Remarques concernant la théorie de Galois[C]// Lang S, Tate J(Eds). The Collected Papers of Emil Artin. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1965, 380.
21 Edwards H. Galois Theory[M]. New York: Springer-Verlag, 1984. 32~47.
22 Dick A. Emmy Noether, 1882-1935[M]. Boston·Basel·Stuttgart: Birkhäuser, 1981. 148.
23 Stillwell J. Elements of Algebra: Geometry, Numbers, Equations[M]. New York: Springer-Verlag, 1994. 160~161.
24 Lang S. Algebra[M]. New York: Springer-Verlag, 2002. 261~332.
25 Artin E. Die Bedeutung Hilberts für die moderne Mathematik[C]// Lang S, Tate J(Eds). The Collected Papers of Emil Artin. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1965, 549.
26 Dirichlet P G L. Vorlesungen über Zahlentheorie[M]. Braunschweig: Friedrich Vieweg & Sohn, 1894: 434~657.
27 数学辞海编辑委员会. 数学辞海[M]. 第2卷. 北京: 中国科学技术出版社, 2002: 430.
28 Hilbert D. The Theory of Algebraic Number Fields[M]. Berlin: Springer, 1998. XXIII.
29 Artin E, Schreier O. Algebraische Konstruktion reeller Körper[J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1927, 5(1): 85~86.
30 Steinitz E. Algebraische Theorie der Körper[J]. Journal für die reine und angewandte Mathematik, 1910, 137: 167~309.
31 Szamuely T. Galois Theory after Galois[EB/OL]. http: //www. renyi. hu/~szamuely/pristem. pdf. 2012.
32 Tignol J P. Galois' Theory of Algebraic Equations[M]. Singapore: World Scientific Pulishing Co. Ptc. Ltd., 2001. 306~307.
33 Artin E. Contents and Methods of an Algebra Course[C]// Lang S, Tate J(Eds). The Collected Papers of Emil Artin. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1965, 545~546.
34 章璞. 伽罗瓦理论——天才的激情[M]. 北京: 高等教育出版社, 2013. 21.
35 Artin E, Rosen M(Editor). Exposition by Emil Artin: A Selection[M]. Providence, Rhode Island: American Mathematical Society, 2007. 5.
36 冯克勤. 代数数论简史[M]. 长沙: 湖南教育出版社, 2002. 35.
37 Rotman J. Galois Theory[M]. New York: Springer-Verlag, 1998. 139.
38 Weintraub S. Galois Theory[M]. New York: Springer-Verlag, 2009. x~xi.
39 Cox D. Galois Theory[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2012. 129.
40 Bewersdorff J. Galois Theory for Beginners: A Historical Perspective[M]. Providence, Rhode Island: American Mathematical Society, 2006. xix.
41 Escofier J P. Galois Theory[M]. New York: Springer-Verlag, 2001. 101~124.
42 Herstein I N. Topics in Algebra[M]. Waltham, Massachusetts·Toronto·London: Ginn and Company, 1964. 196.
43 Jacobson N. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory[M]. New York·Heidelberg·Berlin: Springer-Verlag, 1964. 55.
44 Birkhoff G D, Mac Lane S. A Survey of Modern Algebra(Fourth Edition)[M]. New York: Macmillan Publishing Co., Inc., 1977. 471.
45 Dummit D, Foote R. Abstract Algebra[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2004. 568~576.
46 Artin E. Collected Papers[C]. Lang S, Tate J(Eds). New York: Springer-Verlag, 2013.
47 Brauer R. Emil Artin[J]. Bulletin of the American Mathematical Society, 1967, 73(1): 38.
48 Der Präsident der Universität Hamburg. Zum Gedenken an Emil Artin(1898-1962)[M]. Hamburg: Hamburg University Press, 2006.


[1] 钱长炎. 法拉第发现电磁感应现象及其思想转变过程[J]. 自然科学史研究, 2019, 38(1): 87-104.