Please wait a minute...
Studies in the History of Natural Sciences  2019, Vol. 38 Issue (4): 479-495    DOI:
ARTICLES     
A Historical Analysis of Emil Artin's Galois Theory
ZHANG Yong1, DENG Mingli2
1. Department of Philosophy, Peking University, Beijing 100871, China;
2. College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
Download:   PDF(1356KB)
Export: BibTeX | EndNote (RIS)      

Abstract  Emil Artin(1898—1962) reformulated Galois theory via abstract algebra. He linearized the theory, and succeeded in bypassing the primitive element theorem to prove its fundamental theorem. On the basis of predecessors' research, this paper analyses the various factors that led to Artin's successful reinterpretation of Galois theory, and further elaborates on the background, structure and role of his book Galois Theory. It provides an in-depth understanding about how Artin was influenced by Dedekind, Hilbert and Steinitz on the abstract process of Galois theory. It further reveals that the elevation of the level of abstraction inalgebra between the 19th and 20th centuries was a prerequisite for the success of Artin's Galois Theory. Finally, the author investigates the influence of Galois Theory on modern Galois theory monographs and algebra textbooks. This paper also commemorates the 120th anniversary of the birth of Emil Artin.

Key wordsGalois      Galois Theory      Emil Artin     
Received: 02 May 2018      Published: 18 June 2022
ZTFLH:  N091  
Cite this article:

ZHANG Yong, DENG Mingli. A Historical Analysis of Emil Artin's Galois Theory. Studies in the History of Natural Sciences, 2019, 38(4): 479-495.

URL:

http://www.shns.ac.cn/     OR     http://www.shns.ac.cn/Y2019/V38/I4/479

1 胡作玄. 阿廷[M]//中国大百科全书总编辑委员会《数学》编辑委员会. 中国大百科全书·数学. 北京: 中国大百科全书出版社, 1988. 5.
2 胡作玄. 近代数学史[M]. 济南: 山东教育出版社, 2006. 403.
3 Van der Waerden B L. Die Galois-Theorie von Heinrich Weber bis Emil Artin[J]. Archive for History of Exact Sciences, 1972, 9(3): 240~248.
4 Kiernan B M. The Development of Galois Theory from Lagrange to Artin[J]. Archive for History of Exact Sciences, 1971, 8(1-2): 40~154.
5 Neumann O. Die Entwicklung der Galois-Theorie zwischen Arithmetik und Topologie(1850 bis 1960)[J]. Archive for History of Exact Sciences, 1997, 50(3-4): 309~310.
6 Kleiner I. A History of Abstract Algebra[M]. Boston·Basel·Berlin: Birkhäuser, 2007. 63~64.
7 Van der Waerden B L. Die Algebra seit Galois[J]. Jahresbericht der Deutschen Mathematiker-Vereinigung, 1966, 68: 155~165.
8 Bourbaki N. Elements of the History of Mathematics (Translated from the French by John Meldrum)[M]. Berlin: Springer-Verlag, 1994. 66~83.
9 Zassenhaus H. Emil Artin, His Life and His Work[J]. Notre Dame Journal of Formal Logic, 1964, 5(1): 2~3.
10 Dumbaugh D, Schwermer J. Creating a Life: Emil Artin in America[J]. Bulletin of the American Mathematical Society, 2013, 50(2): 322~323.
11 Artin E. Galoissche Theorie[M]. Leipzig: B. G. Teubner Verlagsgesellschaft, 1959. Vorwort.
12 Menger K. Reminiscences of the Vienna Circle and the Mathematical Colloquium[M]. Dordrecht: Springer Science+Business Media, 1994. 225.
13 Van der Waerden B L. On the Sources of My Book Moderne Algebra[J]. Historia Mathematica, 1975, 2(1): 31~40.
14 Van der Waerden B L. Moderne Algebra I [M]. Berlin: Springer-Verlag, 1930. 2~3.
15 Soifer, A. The Scholar and the State: In Search of Van der Waerden[M]. Basel: Birkhäuser, 2015. 39~46.
16 Mac lane S. Van der Waerden's Modern Algebra[J]. Notices of the American Mathematical Society, 1997, 44(3): 322.
17 Van der Waerden B L. Algebra I [M]. Berlin·Heidelberg·New York: Springer-Verlag, 1971.
18 阿廷. 伽罗华理论[M]. 李同孚, 译. 上海: 上海科学技术出版社, 1979.
19 丁石孙, 袁向东, 郭金海. 有话可说——丁石孙访谈录[M]. 长沙: 湖南教育出版社, 2013. 46.
20 Artin E. Remarques concernant la théorie de Galois[C]// Lang S, Tate J(Eds). The Collected Papers of Emil Artin. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1965, 380.
21 Edwards H. Galois Theory[M]. New York: Springer-Verlag, 1984. 32~47.
22 Dick A. Emmy Noether, 1882-1935[M]. Boston·Basel·Stuttgart: Birkhäuser, 1981. 148.
23 Stillwell J. Elements of Algebra: Geometry, Numbers, Equations[M]. New York: Springer-Verlag, 1994. 160~161.
24 Lang S. Algebra[M]. New York: Springer-Verlag, 2002. 261~332.
25 Artin E. Die Bedeutung Hilberts für die moderne Mathematik[C]// Lang S, Tate J(Eds). The Collected Papers of Emil Artin. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1965, 549.
26 Dirichlet P G L. Vorlesungen über Zahlentheorie[M]. Braunschweig: Friedrich Vieweg & Sohn, 1894: 434~657.
27 数学辞海编辑委员会. 数学辞海[M]. 第2卷. 北京: 中国科学技术出版社, 2002: 430.
28 Hilbert D. The Theory of Algebraic Number Fields[M]. Berlin: Springer, 1998. XXIII.
29 Artin E, Schreier O. Algebraische Konstruktion reeller Körper[J]. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1927, 5(1): 85~86.
30 Steinitz E. Algebraische Theorie der Körper[J]. Journal für die reine und angewandte Mathematik, 1910, 137: 167~309.
31 Szamuely T. Galois Theory after Galois[EB/OL]. http: //www. renyi. hu/~szamuely/pristem. pdf. 2012.
32 Tignol J P. Galois' Theory of Algebraic Equations[M]. Singapore: World Scientific Pulishing Co. Ptc. Ltd., 2001. 306~307.
33 Artin E. Contents and Methods of an Algebra Course[C]// Lang S, Tate J(Eds). The Collected Papers of Emil Artin. Reading, Massachusetts: Addison-Wesley Publishing Company, Inc., 1965, 545~546.
34 章璞. 伽罗瓦理论——天才的激情[M]. 北京: 高等教育出版社, 2013. 21.
35 Artin E, Rosen M(Editor). Exposition by Emil Artin: A Selection[M]. Providence, Rhode Island: American Mathematical Society, 2007. 5.
36 冯克勤. 代数数论简史[M]. 长沙: 湖南教育出版社, 2002. 35.
37 Rotman J. Galois Theory[M]. New York: Springer-Verlag, 1998. 139.
38 Weintraub S. Galois Theory[M]. New York: Springer-Verlag, 2009. x~xi.
39 Cox D. Galois Theory[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2012. 129.
40 Bewersdorff J. Galois Theory for Beginners: A Historical Perspective[M]. Providence, Rhode Island: American Mathematical Society, 2006. xix.
41 Escofier J P. Galois Theory[M]. New York: Springer-Verlag, 2001. 101~124.
42 Herstein I N. Topics in Algebra[M]. Waltham, Massachusetts·Toronto·London: Ginn and Company, 1964. 196.
43 Jacobson N. Lectures in Abstract Algebra III. Theory of Fields and Galois Theory[M]. New York·Heidelberg·Berlin: Springer-Verlag, 1964. 55.
44 Birkhoff G D, Mac Lane S. A Survey of Modern Algebra(Fourth Edition)[M]. New York: Macmillan Publishing Co., Inc., 1977. 471.
45 Dummit D, Foote R. Abstract Algebra[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2004. 568~576.
46 Artin E. Collected Papers[C]. Lang S, Tate J(Eds). New York: Springer-Verlag, 2013.
47 Brauer R. Emil Artin[J]. Bulletin of the American Mathematical Society, 1967, 73(1): 38.
48 Der Präsident der Universität Hamburg. Zum Gedenken an Emil Artin(1898-1962)[M]. Hamburg: Hamburg University Press, 2006.


[1] QIAN Changyan. Faraday's Discovery of Electromagnetic Induction and the Process of the Transformation of His Ideas[J]. Studies in the History of Natural Sciences, 2019, 38(1): 87-104.