ARTICLES |
|
|
|
|
Preliminary Research on Zhou Shuxue's Knowledge of Cewang |
QU Zhaohua |
Institute for the History of Natural Sciences, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Lizong suanhui (历宗算会, Assembly of Mathematical Methods Connected with the Calendar) is a traditional Chinese mathematical work compiled by Zhou Shuxue (周述学), a famous scholar of the Ming Dynasty. The features of the interpretation and organization of cewang (测望,method of surveying distant bodies) problems in this book deserves our attention. However, these features have rarely attracted the specific attention of prior researchers. This paper conducts a relatively detailed analysis on this, pointing out that Zhou Shuxue used the principle of rongheng rongzhi (容横容直, inscribed horizontal and vertical rectangles) based on the principle of churu xiangbu (出入相补, out-in complementary) contained in related proofs and figures in Yang Hui's (杨辉) mathematical book as the basis of his understanding of a series of methods of cewang. He reclassified the corresponding problems into several grand classifications of danbiao cewang (单表测望, measuring with single rod), chongbiao zaiwang (重表再望, measuring with two equal rods), chongju ceshen (重矩测深, measuring the depth of something with two trisquares), sanwang (三望, measuring three times) and siwang (四望, measuring four times) etc., uniformly naming these classifications with measuring tools plus the conditions of the solving methods. He also reorganized each type of problem above into smaller classifications: whether or not the height of the surveyor's eye is 0, zheng ceguang (正测广, surveying the width in vertical direction) and xie ceguang (斜测广, surveying the width in oblique direction), and surveying one point and two points, etc.. Compared to those of Gu Yingxiang (顾应祥), Zhou's classifications of these problems were more rational, and the names of these classifications given by him were more unified, which indicated his deeper understanding of the problems and methods of cewang.
|
Received: 31 December 2020
Published: 27 January 2022
|
|
|
|
[1] 徐阶. 山阴云渊周子传[M]//周述学. 云渊先生文选. 刻本. 何继高刊, 1592(万历壬辰): 1a-5a. [2] 黄宗羲. 南雷文定: 前集卷10[M]//四库全书存目丛书·集部: 第205册. 济南: 齐鲁书社, 1996: 229-230. [3] 张廷玉. 明史: 卷299[M]. 北京: 中华书局, 1963: 7653. [4] 周述学. 神道大编历宗算会[M]//续修四库全书: 第1043册. 上海: 上海古籍出版社, 1996: 557-832. [5] 周述学. 神道大编历宗通议[M]//续修四库全书: 第1036册. 上海: 上海古籍出版社, 1996: 165-494. [6] 周述学. 神道大编象宗华天五星[M]//续修四库全书: 第1031册. 上海: 上海古籍出版社, 1996: 215-322. [7] 周述学. 云渊先生文选[M]. 刻本. 何继高刊, 1592(万历壬辰). [8] 高峰. 《中西数学图说》勾股和较问题探微[J]. 自然科学史研究, 2020, 39(2): 135-151. [9] 杨琼茹. 明代历算学家周述学及其算学研究[D]. 台北: 台湾师范大学, 2003: 54. [10] 郭书春. 古代世界数学泰斗刘徽[M]. 济南: 山东科学技术出版社, 2013: 168. [11] 张苍, 耿寿昌. 九章算术[M]. 刘徽, 李淳风, 注//郭书春. 中国科学技术典籍通汇·数学卷: 第1册. 郑州: 河南教育出版社, 1993: 96-97. [12] 杨辉. 续古摘奇算法[M]//杨辉算法//郭书春. 中国科学技术典籍通汇·数学卷: 第1册. 郑州: 河南教育出版社, 1993: 1113-1116. [13] 吴敬. 九章算法比类大全[M]//郭书春. 中国科学技术典籍通汇·数学卷: 第2册. 郑州: 河南教育出版社, 1993: 274、275、279-281. [14] 王文素. 算学宝鉴[M]//郭书春. 中国科学技术典籍通汇·数学卷: 第2册. 郑州: 河南教育出版社, 1993: 778-789. [15] 唐顺之. 重刊校正唐荆川先生文集: 卷12[M]. 刻本. 杭州: 叶氏宝山堂, 1553(嘉靖癸丑): 19b-20b. [16] 顾应祥. 勾股算术[M]//郭书春. 中国科学技术典籍通汇·数学卷: 第2册. 郑州: 河南教育出版社, 1993: 975-992. [17] 秦九韶. 数书九章[M]//郭书春. 中国科学技术典籍通汇·数学卷: 第1册. 郑州: 河南教育出版社, 1993: 513-534. [18] 王守义. 数书九章新释[M]. 合肥: 安徽科学技术出版社, 1992: 266. [19] 李俨. 明代算学书志[M]//郭书春. 李俨钱宝琮科学史全集: 第6卷. 沈阳: 辽宁教育出版社, 1998: 485-486. [20] 吴文俊. 出入相补原理[M]//中国古代科技成就. 北京: 中国青年出版社, 1978: 80-100. [21] 邹大海. 从先秦文献和《算数书》看出入相补原理的早期应用[J]. 中国文化研究, 2004, 冬之卷: 52-60. [22] 钱宝琮. 中国数学史[M]. 北京: 科学出版社, 1981: 72-75. [23] 吴文俊. 《海岛算经》古证探源[M]//《九章算术》与刘徽. 北京: 北京师范大学出版社, 1982: 162-180. [24] 邹大海. 容横容直原理[M]//郭书春, 李家明. 中国科学技术史·辞典卷. 北京: 科学出版社, 2011: 292. [25] 刘徽. 海岛算经[M]//郭书春. 中国科学技术典籍通汇·数学卷: 第1册. 郑州: 河南教育出版社, 1993: 217-223. [26] 杨辉. 乘除通变本末[M]//杨辉算法//郭书春. 中国科学技术典籍通汇·数学卷: 第1册. 郑州: 河南教育出版社, 1993. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|