ARTICLES |
|
|
|
|
A Probe into the Problems of Gougu Hejiao in Zhongxi Shuxue Tushuo |
GAO Feng |
Institute for the History of National Science, CAS, Beijing 100190, China |
|
|
Abstract Zhongxi shuxue tushuo中西数学图说(Illustration of Chinese and Western Mathematics)is a mathematical work written by Li Dupei, a scholar of the late Ming Dynasty, against the background of the introduction of western mathematics into China. The book's research on gougu hejiao勾股和较(sum and difference of three sides of right-angled triangles) was unique for the period and ground-breaking. Through an analysis of the issues tackled in the book, this paper points out that although the works Tongwen suanzhi 同文算指 and Gougu yi 勾股义 were the direct sources of knowledge on gougu hejiao in Li's work, he did not adopt the form of proof given by them that was from the Jihe yuanben 几何原本 (Chinese translation of Euclid's Elements), but instead uses the principle of churu xiangbu 出入相补(out-in complementary) from Chinese traditional mathematics. Geometric figures, which are consistent with Zhao Shuang's 赵爽 Gougu yuanfang tuzhu勾股圆方图注, are the basis for the proof of gougu hejiao problems in Zhongxi shuxue tushuo. On the basis of the existing problems of gougu hejiao, Li makes a systematic summary of all the situations in which it is used, and lays out and proves one by one the situations that need to be demonstrated. The achievements of the work have many overlaps and similarities with the work done by mathematicians in the early and middle Qing dynasty on gougu hejiao. The geometric proof and systematic summarization of gougu hejiao reflect the efforts of Zhongxi shuxue tushuo to interpret the contents of traditional mathematics under the influence of western mathematics.
|
Received: 12 February 2020
Published: 22 June 2021
|
|
|
|
1 李俨. 明代算学书志[J]. 图书馆学季刊, 1926, 1(4): 676~677. 2 潘亦宁. 中西数学的会通——以明清时期(1582~1722)的方程解法为例[D]. 北京: 中国科学院自然科学史研究所, 2006. 3 李笃培. 中西数学图说[M]. 抄本. 中国科学院自然科学史研究所藏. 4 梅荣照, 王渝生, 刘钝. 欧几里得《原本》的传入和对我国明清数学的影响[C]//梅荣照. 明清数学史论文集. 南京: 江苏教育出版社, 1990.65. 5 陈红红. 明末李笃培《中西数学图说》之几何会通的研究[D]. 呼和浩特: 内蒙古师范大学, 2019. 6 万历庚戌科序齿录[G]//明代进士登科录汇编. 第21册. 台北: 台湾学生书局, 1969. 11764. 7 文庆, 李宗昉, 铁麟, 等. 钦定国子监志[M]. 卷48. 北京: 北京古籍出版社, 2000. 878. 8 李星源覆李俨信函[R]. 李俨捐献资料. 中国科学院自然科学史研究所图书馆藏. 9 张凤羽. (顺治)招远县志[G]. 卷9. 人物//中国地方志集成·山东府县志辑. 第47册. 南京: 凤凰出版社, 2004. 410~413. 10 刘抡升. 方圆杂说序[G]//招远李氏族谱. 第12册. 2005. 3497~3498. 11 李俨. 李俨所藏中国算学书目录续编[J]. 科学, 1926, 11(6): 820. 12 山东历史博物展览会报告书[M]. 一编. 济南: 山东历史博物展览会, 1922(民国十一年). 32. 13 山东历史博物展览会报告书[M]. 二编. 济南: 山东历史博物展览会, 1922(民国十一年). 56, 126. 14 梅荣照. 刘徽的勾股理论—关于勾股定理及其有关的几个公式的证明[C]//科学史集刊. 第11期. 北京: 科学出版社, 1984. 77~95. 15 刘钝. 梅文鼎在几何学领域中的若干贡献[C]//梅荣照. 明清数学史论文集. 南京: 江苏教育出版社, 1990. 182~210. 16 顾应祥. 勾股算术[M]//续修四库全书. 第1044册. 上海: 上海古籍出版社, 2002.1~18. 17 周述学. 神道大编历宗算会[M].卷3//续修四库全书. 第1043册. 上海: 上海古籍出版社, 2002.604~631. 18 程大位. 算法统宗[M]. 卷12//续修四库全书. 第1043册. 上海: 上海古籍出版社, 2002.170~173. 19 郭书春. 中国科学技术史·数学卷[M]. 北京: 科学出版社, 2010. 20 徐光启. 勾股义[M]. 海山仙馆丛书本. 1847(道光丁未). 21 潘澍原. 会通中西: 明清之际勾股与测望知识的转变[D]. 北京: 中国科学院自然科学史研究所, 2016. 64~70. 22 利玛窦, 李之藻. 同文算指通编[G]. 卷6//故宫珍本丛刊. 第401册. 海口: 海南出版社, 2000.207~211. 23 赵彦超. 传统勾股在清代的发展与西学的影响[D]. 北京: 中国科学院自然科学史研究所, 2005. 24~30. 24 算经十书[M]. 郭书春, 刘钝, 点校. 台北: 九章出版社, 2001.69. 25 算经十书[M]. 钱宝琮, 点校. 北京: 中华书局, 1963.15~16. 26 梅文鼎. 勾股举隅[M]//中国科学技术典籍通汇·数学卷. 第4册. 郑州: 河南教育出版社, 1993. 439~440. 27 沈康身. 勾股术新议[C]//吴文俊. 中国数学史论文集. 二. 济南: 山东教育出版社, 1986. 19~28. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|