ARTICLES |
|
|
|
|
A Study of Proof and the Application of Gougu Identities during Qing Dynasty |
LI Zhaohua |
School of Mathematics, Tianjin Normal University, Tianjin 300387,China |
|
|
Abstract The Gougu rule (Pythagorean theorem) and identities are an important part of the rudiments of ancient mathematics in China. Books by mathematicians during the Qing Dynasty (1644-1911) that were devoted to the amplification, proof and application of identities indicate a wealth of results that have not been specially studied. This paper lays emphasis on the investigation on examples for proof as well as the application of identities appearing in the above books. This paper points out that Gougu bili biao (Gougu Table of Proportion, 1863) by Wu Jiashan (1820-1885) provides a complete set with a total of 20 identities. All of the principles needed for identity proving can be found in Gougu yuanfang tuzhu (Illustrated Comments on Right Angled Triangle)by Zhao Shuang early in the 3rd century.Furthermore, the paper points out the relation between the application of the identities and Shuli jingyun (Essential Principles of mathematics,1723).Based on such historical mathematical materials,a better and more comprehensive understanding of Gougu identities can be gained.
|
Received: 18 June 2018
Published: 22 June 2021
|
|
|
|
1 李俨. 中算家的毕达哥拉斯定理研究[C]. 第8节//李俨钱宝琮科学史全集. 第6集. 沈阳: 辽宁教育出版社,1998.61~70. 2 吴文俊. 出入相补原理[C]. 第3节//吴文俊论数学机械化. 济南: 山东教育出版社, 1996.174~175. 3 郭书春. 九章筭术译注[M]. 上海: 上海古籍出版社, 2009.374~375. 4 曲安京. 商高、赵爽与刘徽关于勾股定理的证明[J]. 数学传播, 1996, 20(3): 20~27. 5 高红成. 吴嘉善与洋务教育革新[J]. 中国科技史杂志, 2007, 28(1): 20~33. 6 吴嘉善. 算书二十一种·勾股[M]//白芙堂算学丛书. 荷池精舍刊本, 1872(同治十一年). 7 项名达. 勾股六术[M]. 贾步纬, 补述//古今算学丛书. 算学书局石印本, 1898(光绪二十四年). 8 钱宝琮. 中国数学史[M]. 北京: 科学出版社, 1981.57. 9 算经十书[M]. 郭书春, 刘钝, 点校. 台北: 九章出版社, 2001.34~35. 10 曲安京. 《周髀算经》新议[M]. 西安: 陕西人民出版社, 2002.42~47. 11 李迪. 中华传统数学文献精选导读[M]. 武汉: 湖北教育出版社, 1999.17~26. 12 梅文鼎. 勾股举隅[M]//梅氏丛书辑要. 承学堂刊本, 1761(乾隆二十六年). 13 项名达. 勾股六术[M]//下学庵算术. 项氏家刊本, 1887(光绪十三年). 14 康熙敕编. 数理精蕴[M]. 下编卷12至卷13//郭书春. 中国科学技术典籍通汇·数学卷. 第3册. 郑州: 河南教育出版社, 1993.457~514. 15 李兆华. 汪莱方程论研究[C]//古算今论. 天津: 天津科技翻译出版公司, 2011.140. 16 刘彝程. 简易庵算稿[M]. 卷2. 制造局刊本, 1900(光绪二十六年). 17 沈善蒸. 造整勾股表简法[M]//古今算学丛书. 算学书局石印本, 1898(光绪二十四年). 18 赖昱维. 勾股数迭代公式之研究与发展[J]. 数学传播, 2014, 38(3): 65~74. 19 李锐. 勾股算术细草·自序[M]//李氏遗书. 醉六堂刊本, 1890(光绪十六年). 20 罗士琳. 续畴人传·李锐[M]//冯立昇. 畴人传合编校注. 郑州: 中州古籍出版社, 2012.52. 21 程贞一, 闻人军. 周髀算经译注[M]. 上海: 上海古籍出版社, 2012.16~30. 22 钱宝琮. 中国数学中之整数勾股形研究[C]//李俨钱宝琮科学史全集. 第9集. 沈阳: 辽宁教育出版社, 1998.313~330. 23 沈康身. 勾股术新议[C]//吴文俊. 中国数学史论文集(二). 济南;山东教育出版社, 1986.19~28. 24 赵彦超. 传统勾股在清代的发展与西学的影响[D]. 北京: 中国科学院自然科学史研究所, 2005.22~30, 43~52. |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|